If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2+52t-9=0
a = 12; b = 52; c = -9;
Δ = b2-4ac
Δ = 522-4·12·(-9)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-56}{2*12}=\frac{-108}{24} =-4+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+56}{2*12}=\frac{4}{24} =1/6 $
| 3/2y=42 | | 5x+14=4x+26 | | 7x^2+2x+3=-1 | | 2e-10=3 | | x^2+(x+2)^2=761 | | (4/5)=(x+2/45) | | 4d+15=8=5d | | 8.7=-4.9t^2+27.5t+8.7 | | 67+35+x=180 | | -2(3x+2)=-24 | | 8.7=-4.9t^+27.5t+8.7 | | 75+12x+9x=180 | | 8.7=4.9t^+27.5t+8.7 | | 5x-2x(x-5)=-7+5x+1 | | x(32-x)=252 | | -3v-7/2=7/5v-7/5 | | 1.25+0.25m=8.00 | | x/x-3=0 | | 5x-2x(x-5)=-7+5x+11 | | -2.8+(b-1.7)=-0.6•9.4 | | 3(6+5y)=2(-5y+4y) | | 63+81+x=180 | | 9a+11=52 | | 3(6+5y)=2(-5+y) | | 92=8c-4 | | 16=4/9u | | ✓x+2=5 | | x(64-x)=252 | | -3/5=1/2v-4/7 | | 5x=2x=18 | | ((x*x*x*x)/4)-(((-1)^4)/4)=0 | | 4-7/9x=1/2 |